

[image: logo]

Categories

Archives

Blog

REST2016 - Creating Sub-module URL entry points

ColdBox Connection, ColdBox MVC, REST, RoadShow

[image:]

Luis Majano

March
11,
2016

Spread the word

[image:]

Luis Majano

March
11,
2016

Spread the word

Share your thoughts

COMMENT

[image: Ortus Solutions]

In this entry I will go over how to leverage ColdBox's Modular architecture to RESTFul routing.
In ColdBox, every module's ModuleConfig.cfc you create has two important facets for building RESTFul services: 1) The this.entryPoint and the 2) routes structure in the configure() method.

If you are creating ColdBox applications using modules, then you will benefit with the capability to nest entry points so they can match to nested sub-modules. Let's say you have the following module structure:

+modules
 + api
 + security
 + data

Then we can create a URL hierarchy to match any sub-module of the api module by leveraging the EntryPoint and the routes configuration.

Parent EntryPoint

The entry point in any module you create will become the pattern argument to a addModuleRoutes() call in the ColdBox routing services. This is important as any rules that apply to URL patterns applies to the entry point, e.g. you can use expressions, nesting, etc.

addModuleRoutes(string pattern, string module, [boolean append='true'])

In the api module our entry point will simple become:

this.entryPoint = "/api";

This means that any incoming URL that has the /api prefix will be routed to the API module.

Parent Routes

The routes structure in the configure() method will be used to declare routes for the module you are building. You can declare all routing inline in this structure or actually declare an array of locations of routing CFM templates to load. By default, every module comes with a single route declared:

routes = [
 { pattern="/:handler/:action?" }
];

In the parent api module you can now register the sub-module entry points so if the parent receives a URL request, the module will then re-direct it to the sub-module:

routes = [
 { pattern="/security", moduleRouting="security" },
 { pattern="/data", moduleRouting="data" }
];

That's it. We have now created sub-module routing by leveraging a URL pattern argument and the moduleRouting argument which dictates to what module to re-direct the routing discovery. This will empower you to create very expressive URL entry points in a modular fashion.

Recent Entries

[image: Ortus March Newsletter]

Ortus March Newsletter

Welcome to Ortus Solutions’ monthly roundup, where we're thrilled to showcase cutting-edge advancements, product updates, and exciting events! Join us as we delve into the latest innovations shaping the future of technology.

Maria Jose Herrera

[image:]

Maria Jose Herrera

April
01,
2024

[image: Into the Box 2024 Last Early Bird Days!]

Into the Box 2024 Last Early Bird Days!

Time is ticking, with less than 60 days remaining until the excitement of Into the Box 2024 unfolds! Don't let this golden opportunity slip away; our exclusive Early Bird Pricing is here for a limited time only, available until March 31st. Why wait? Secure your seat now and take advantage of this steal!

Maria Jose Herrera

[image:]

Maria Jose Herrera

March
20,
2024

[image: Ortus February Newsletter 2024]

Ortus February Newsletter 2024

Welcome to Ortus Solutions’ monthly roundup, where we're thrilled to showcase cutting-edge advancements, product updates, and exciting events! Join us as we delve into the latest innovations shaping the future of technology.

Maria Jose Herrera

[image:]

Maria Jose Herrera

March
06,
2024

www.ortussolutions.com

© Copyright Ortus Solutions, Corp.

